一、人工智能概述
1.人工智能发展历程
人工智能(Artificial Intelligence, AI)是对人的意识和思维过程进行模拟并系统应用的一门新兴科学,其发展经历了三次浪潮。1956年,美国Dartmouth大学举行的聚会是人工智能正式诞生的标志,这一时期使用机械化思考方式和逻辑学知识来解决问题,但对复杂的问题束手无策;20世纪80年代,Hopfield神经网络和BT训练算法的提出,使AI再次兴起,出现了语音识别、翻译等计划,但迟迟未进入人们的生活之中;2006年,Hinton提出深度学习技术,并随着互联网的普及和应用,AI在各个领域迅速得到发展和应用。
2.人工智能的基础和要求
人工智能的核心是算法,基础条件是数据及计算能力。因此,可以认为医疗与人工智能结合的关键要素是“算法+有效数据+计算能力”。先进算法能提升数据使用效率。在医疗领域,有效的医疗大数据是人工智能应用的基础,医疗数据的有效性包括三个方面:电子化程度、标准化程度以及共享机制。电子化程度强调数据和病历的供给量;标准化程度强调数据之间的可比性和通用型;共享机制强调数据获取渠道的便利性和合法性。随着互联网的普及,我国各级医疗机构、健康管理机构、行政机构、居民都已普遍了解互联网并链接互联网,给大数据的实现奠定了基础。
3.医疗健康领域对人工智能的需求
近年来,借助人工智能技术,开展智慧医疗成为医疗领域的热点。2017年7月,国务院印发的《新一代人工智能发展规划》提出,要建立新一代人工智能基础理论体系和关键共性技术体系,加快培养聚集人工智能高端人才。同年12月,工信部印发《促进新一代人工智能产业发展三年行动计划(2018—2020年)》,对医疗人工智能的发展做出了详细的规划,提出要着重在医疗影像辅助诊断系统等领域率先取得突破。2018年,国务院办公厅印发《关于促进“互联网+医疗健康”发展的意见》,明确支持“互联网+医疗保健”的发展,允许依托医疗机构发展互联网医院。事实上,除了医疗影像辅助诊断对AI具有巨大的需求外,辅助诊断、辅助手术、辅助护理、辅助检查、辅助医院管理、辅助挂号、辅助减少计量误差、健康管理、药品研发等医疗健康领域对AI技术都有强大需求。
随着我国人口老龄化程度不断加深,慢性病、癌症发病率逐年上升,以人力为主的各类卫生资源配置不足、分布不均的困境越发突显,AI作为一门综合性极强的交叉学科,将在医疗领域内得到越来越多的应用,并将成为影响医疗行业发展的重要科技手段。
二、医疗人工智能应用现状
目前,人工智能在医疗健康领域已得到了初步的应用,主要集中在辅助影像和病理诊断、辅助护理、辅助随访、基层医生助手、医院智能管理及辅助健康管理等方面。
1.辅助影像和病理诊断
医学影像及病理切片作为结构化数据,是AI应用的绝佳场所。2015年起举办的CAMELYON16挑战赛,比较AI和病理医生在检测乳腺癌患者淋巴结转移病理切片中转移灶的潜力,结果显示AI在诊断模拟中的表现优于病理医师。目前,人工智能辅助影像和病理诊断在国内发展迅速,2006年我国首家独立临床病理诊断专业机构——上海复旦临床病理诊断中心成立,启用数字病理远程会诊平台,免去患者来回奔波。2015年沸腾医疗有限公司以“E诊断医学影像服务平台”为核心,通过“E诊断”医学影像技术专业输出及专业精准的远程医学影像诊疗合作,实现了远程医学影像信息交互的目标。
2.辅助护理
我国台湾医院应用AI产生护理诊断,AI建议的诊断与护士建议的诊断一致百分比高达87%。国外AI已普遍运用于人们的日常生活护理中,日本研究机构Riken开发的机器人Robear,能将病人从床上抬起,帮助行动不便的病人行走、站立等;应用AI开发的机器人能为老年及瘫痪患者提供喂饭、日常照护等服务。澳大利亚养老院用机器人做护工,通过给机器人输入程序,使其可以与老年人一对一交流,消减老年人的苦闷。AI在护理领域的应用,极大减轻了护理人员负担,为患者提供了温暖且有力的服务,是应对老龄化社会的有力帮助。
3.辅助随访
随访是医院常规工作的重要组成部分,然而目前的卫生人力无法满足所有患者的随访需求。AI的发展打破了长期随访在时间和空间上的限制。2017年,海宁市中心医院首次应用AI智能随访助手,采用声纹预测思维算法,语言识别准确率高达97.5%。2018年,上海交通大学医学院附属仁济医院东院日间手术病房正式上线AI随访助手,随访助手可以根据问题模板模拟医生进行电话随访,主要询问患者出院后是否发生呕吐、疼痛、发热、伤口渗血感染等不良情况。随访助手的上线不仅大大提高了随访效率,还确保了随访信息采集的全覆盖及准确性。同时,随访助手可以根据不同的手术种类,制订个性化随访计划,通过终端自动拨打患者电话,模拟人声与患者进行术后随访沟通,并有效采集患者回答的信息。随访结束后,医务人员能清楚地了解每位患者的术后情况。
4.基层医生助手
基层医院在实现“健康中国”战略中有着举足轻重的作用,但目前其服务能力难以满足广大群众的基本需求。AI通过学习海量的专家经验和医学知识,建立深度神经网络,并在临床中不断完善,协助基层医生给群众提供高质量的服务。2017年,科大讯飞和清华大学联合研发的“智医助理”以超过合格线96分的成绩成为全球第一个通过国家执业医师资格考试综合笔试测评的AI机器人,可以辅助基层医生提升诊疗质量和效率。2017年9月,国家在安徽省旌德县首次开展全科医生机器人辅助基层医疗试点,深受基层群众欢迎。
5.医院智能管理
人工智能技术在医院的应用,能提高医院为患者提供正确治疗方案的精准性,减少了患者的不必要支出,并且能合理地为患者安排治疗计划。澳门仁伯爵综合医院应用AI技术,在电子处方系统内设置安全警示,确保用药规范,防止滥用抗生素等药物。美国IBM公司应用机器学习方法,自动读取患者电子病历相关信息,得出辅助诊断信息,实现医疗辅助诊断。
6.辅助健康管理
传统的健康管理技术在信息的获取、处理和应用上相对落后,将AI应用于健康管理,通过对健康数据实时采集、分析和处理,评估疾病风险,给出个性化、精准化的基本管理方案和后续治疗方案,能有效降低疾病发病率和患病率。健康管理机构可以通过手机APP或智能可穿戴设备,检测用户的血压、血糖、心率等指标,进行慢性病管理。国外Welltok公司利用“CaféWell健康优化平台”,管理用户健康,包括压力管理、营养控制以及糖尿病护理等,并在用户保持健康生活习惯时给予奖励。同时,为用户提供更灵活、全方位的健康促进方案,包括阶段性临床护理、长期保持最佳健康状态等多个方面。
三、人工智能存在的问题和挑战
目前,人工智能+健康医疗正在起步阶段,要保证AI在医疗健康领域应用的深入发展,仍有许多亟需解决的问题和挑战。
1.监管缺失
目前,国内尚未出台相关法律法规对AI进行监管,而作为AI的基础医疗大数据也没有完善的法律条文来规范,对数据的隐私保护、责任规范、安全性等没有明确的法律指示。AI在医疗健康领域应用的质量标准、准入体系、评估体系尚是空白,无法对AI数据和算法进行有效验证和评价,不利于监管,阻碍了AI产品在医疗健康领域的应用和发展。
2.数据质量
高质量的医疗数据对提升AI在医疗健康领域应用的准确性有着至关重要的作用,尽管我国医院的数据庞大,但大部分是非结构化数据,不能发挥出“大数据”挖掘的价值。由于疾病的复杂性,数据维度、特性各不相同,质量参差不齐,如将数据细分到每种疾病,可利用的样本量很少。同时, AI的深度学习需要使用大规模规范化数据进行训练,细微的数据误差会对AI发展产生负面影响。我国当前医院与医院、院内科系互不相连,没有统一标准的临床结构化病历报告,医生手写病历不规范,临床用药、检查等细节缺失,患者离开医院后失访率较高等各种原因,造成医疗数据错漏、数据质量低下。
3.伦理问题
AI产品做出的医疗决策是通过机器学习大量的医疗数据模拟医生做出的,大规模医疗数据在使用过程中会有泄露的风险,对个人隐私造成影响。决策是基于算法,而算法在分析数据过程中也会获得类似于人类偏见的思想,导致出现算法歧视的不良后果。算法歧视将带来一系列伦理问题,是AI不可回避的挑战。
4.医保支付
AI应用于医疗健康领域,最核心的问题是谁来买单,因此医保覆盖是一个绕不开的话题。如果由患者自费,那么市场就会缩小,AI产业无法向前发展,也很难证明AI在医疗领域的有效价值。目前,公立医院医保报销压力较大,将AI产品纳入医保,医保报销的资金压力将会激增。同时,互联网医疗由于其特殊的属性,还面临异地结算的难题。
5.人才匮乏
目前,既懂医疗又懂AI技术的复合型、战略型人才极其短缺,其中10年以上资深人才尤为缺乏。同时,医务人员对AI的接纳度不足,部分医务人员甚至对AI抱有抵触心理。AI技术的使用需要对医务人员进行专业化规范培训,在此背景下,建立完善的人才培养和人才引进机制是重中之重。
四、讨论与建议
1.加强行业指导和监管
政府部门应尽快出台人工智能相关法律法规,加强对人工智能的监管,通过强化监管,加强对数据的保护,防止数据泄露导致居民隐私受损,甚至危害国家安全。同时,还应建立AI在医疗健康领域应用的标准规范,保障AI产品的质量。此外,政府部门应明确AI在医疗健康领域的定位,明确医生不会被AI取代,AI只是帮助医生进行临床诊疗,方便患者获得高质量的医疗服务,医生仍对诊断结果负主要责任。政府部门应理性看待新一轮的AI浪潮,提升居民对AI的接纳度,积极引导居民、资本和相关机构按更加合理的速度和方向发展医疗AI。
2.加强核心技术人才培养
面对AI人才匮乏的严峻形势,政府要加强人工智能领域专业建设,培养AI算法和技术方面的优秀人才。推进“新工科”建设,形成“人工智能+X”复合专业培养新模式,推动AI领域国家级精品在线课程建设。同时,建立人工智能学院、研究院或交叉研究中心,引导高校通过增量支持和存量调整,加大对人工智能领域核心人才的培养力度。在职业院校大数据、信息管理相关专业中增加人工智能相关内容,培养人工智能应用领域技术人才。另外,要加强对医务人员使用AI的技能培训,保证AI产品能更好地服务于临床实践。
3.夯实数据基础
IBM公司用于辅助医生设计癌症治疗方案的AI产品沃森,由于使用的不是真实患者的数据训练沃森,沃森开出了不合适且危险的治疗方案。可见,数据的质量和数量是AI竞争的核心所在,目前互联网的基础体系已初步健全,但仍存在许多虚假数据,这与脱离统计模型的桎梏、用全数据即真实数据直接分析的大数据初衷相悖。因此,应打破医疗机构、政府部门的数据壁垒,建立数据共享机制,促进不同机构之间、地区之间的数据联网,形成真正的大数据。由于医疗健康数据种类繁多、标准不统一,应加快医疗数据电子化、标准化的进程,形成规范化AI数据集,夯实AI应用的数据基础。同时,加强信息隐私保护建设,研究数据脱敏技术,保障医疗数据可以实时、准确地进行流通,避免数据泄露的风险。
4.深度推进互联网应用
目前,我国东部地区医疗健康机构已具备互联网基础,但部分中西部地区尚有欠缺,而这些地区由于经济水平较低、医疗水平较差,对远程医疗、人工诊疗助手等AI需求强烈,建议国家有侧重地对中西部地区互联网建设给予政策倾斜,促进互联网应用的全面发展。加强基层医疗机构互联网应用,引导优质的医疗资源下沉至基层,实现资源共享,提高医疗服务水平,推动分级诊疗制度。
五、小结
人工智能的记忆力和计算能力远优于人脑,且可扩充脑容量、延伸脑功能、增强脑负荷,能够成为基层医生的智囊、三甲医院医生的秘书,弥补卫生人力资源不足。目前,我国人工智能尚处于起步阶段,仅具有计算智能,“人工智能+医疗健康”应用的领域将会越来越广,尤其适合社区,通过早发现、早诊断、早治疗,有针对性地进行人群健康干预,降低后续的医疗成本。在医院管理方面,AI可简化行政管理和临床医疗管理流程;在影像诊断领域,AI可快速阅读成像,进行分析和诊断;在医疗资源方面,AI能解决昂贵的剂量误差问题;在诊疗方面,AI可为特定病种初诊,进行辅助手术。总之,AI将在人类生命健康全周期中发挥更大的作用,但真正用于卫生健康的核心领域可能还需一个漫长的过程。
作者:金春林、何达,上海市卫生和健康发展研究中心(上海市医学科学技术情报研究所)。